The next big idea

In July 2012, Science Magazine asked young scientists to describe the one big idea in their field that they wish every non-scientist understood. Unfortunately my submission has not been selected for publication: I’m then posting it here in order to share my choice with the public.
The contributions that made the cut are available at NextGenVOICES.

“As a sentient species we experience what surrounds us through our senses: for example, our eyes are sensitive detectors of light. However, this light corresponds to a small range of excitations of one type of elementary particles called photons: let photons oscillate outside of the narrow visible interval and you get the full spectrum of electromagnetic waves. Take a different elementary particle and you get a wealth of new phenomena: if you choose gravitons you obtain gravitational waves, my research field. It was born with Einstein, who understood that space and time are not separate from each other but rather form a single entity, space-time; furthermore, this entity is not a quiet stage for phenomena to take place in it: the stage is an actor itself. In presence of heavy astrophysical objects in fast motion, space-time can change shape and even wobble, just like the membrane of a drum, giving off the “sounds” of the Universe. These sounds are the aforementioned gravitational waves and originate from violent events such as the Big Bang and the merger of two black holes. In a few years we will be able to listen to these sounds, thanks to advanced dedicated antennas. It is as if we had extended the capabilities of our senses, thus enabling ourselves to experience the Universe in completely new ways. Every time we have done that in the past we have learned something new about Nature that could possibly benefit mankind.
I wish every non-scientist knew about this.”

Numerical simulation of two merging black holes performed by the Albert Einstein Institute in Germany: what this rendition shows through colors is the degree of perturbation of the spacetime fabric, the so-called gravitational waves. Image credit: Werner Benger.

Numerical simulation of two merging black holes performed by the Albert Einstein Institute in Germany: what this rendition shows through colors is the degree of perturbation of the spacetime fabric, the so-called gravitational waves.
Image credit: Werner Benger.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s